




# 2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL



## 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL



| 2.2.1 Система обозначений                              | 69 |
|--------------------------------------------------------|----|
| 2.2.2 Варианты исполнения                              | 70 |
| 2.2.3 Таблицы выбора                                   | 71 |
| Цилиндро-червячные двухступенчатые мотор-редукторы STA |    |
| Цилиндрические предступени                             | 74 |
| Цилиндро-червячные двухступенчатые редукторы FTA       |    |
| 2.2.4 Размеры                                          |    |







#### 2.2.1 Система обозначений

Цилиндро-червячные двухступенчатые редукторы FTA

| FTA      | 71/70 1  | 26(6,3x20) | ОП:3     | AC28 | F(L) | IEC:63 — | B14      | FE11(x14C) |
|----------|----------|------------|----------|------|------|----------|----------|------------|
| <u> </u> | <u> </u> | 4          | <u> </u> | 4    | 4    | 4        | <u> </u> | 4          |
| 1        | 2        | 3          | 1        | 5    | 6    | 7        | R        | 9          |
|          |          | <b>3</b>   |          |      | 0    |          | <b>O</b> |            |

тип редуктора: цилиндро-червячный (FTA — с входным фланцем, STA — без входного фланца, TA - без входного фланца с выступающим входным валом)
Габарит редуктора: (входная ступень/выходная ступень) межосевое расстояние в мм
Номинальное передаточное отношение редуктора (передаточное отношение входной ступени х выходной ступени)
Относительное положение ступеней редуктора

Обозначение полого выходного вала
Выходной фланец (L — левый; R - правый)
Обозначение входного типоразмера редуктора

Цилиндро-червячные двухступенчатые мотор-редукторы STA

Обозначение полого входного вала (используется стальная переходная

Исполнение фланца под электродвигатель (**B5**, **B14**) - (для STA не указывается)

STA 71/70 126(6,3x20) OΠ:3 AC28 F(L) IEC:63 B14 //0,12/4-

# 11/090/063/IM2181-IP54/F/220/380/50/Y3/S1-T/10/AC/220/380-K2

0,12 – мощность электродвигателя в кВт.

4 – количество полюсов.

втулка 11х14)

11 – диаметр вала электродвигателя в мм.

090 – наружный диаметр фланца электродвигателя в мм.

**063** – высота от лап до оси (только для лапного исполнения, для фланцевого исполнения ставится 000).

**IM:2181** – конструктивное исполнение по способу монтажа (ГОСТ 2479)

**IP:54** – исполнение по степени защиты.

**F** - класс изоляции

**220/380/50** – напряжение (В) и частота (Гц) питания электродвигателя

УЗ - климатическое исполнение

**S1** - режим работы

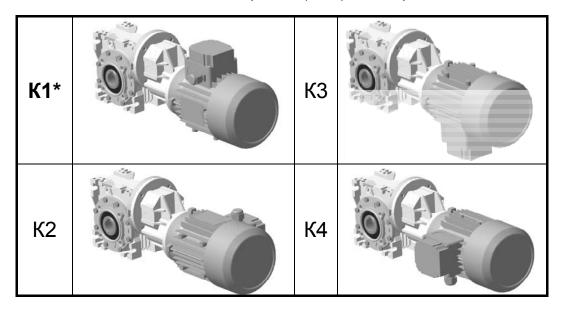
**Т**- тормоз

10 - тормозной момент в Нм

**AC** - тип питания тормоза (переменное)

220/380 – напряжение (В) питания электротормоза

**К2** – положение клеммной коробки.








## 2.2.2 Варианты исполнения

## Положение клеммной коробки (ПКК) электродвигателя



<sup>\* –</sup> стандартный вариант установки.

Варианты установки выходного фланца аналогично одноступенчатым моторредукторам SRT.

#### Вариант взаимного расположения ступеней

| ОП1  | ОП2 |  |
|------|-----|--|
| ОП3* | ОП4 |  |

<sup>\* -</sup> стандартный вариант установки



2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL





## 2.2.3 Таблицы выбора

Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL

| 22,0 | – Число оборотов выходного вала $n_2  [oб/{\it мин}]$ жирным шрифтом –     | $n_2$ |
|------|----------------------------------------------------------------------------|-------|
| 31   | - Крутящий момент на выходном валу $M_2$ [ $H:_{ m M}$ ] обычным шрифтом – | $M_2$ |
| 2,5  | <b>–</b> Коэффициент эксплуатации F.S. курсивом –                          | F.S.  |

| <b>22,0</b> 31 2,5 | – рекомендованный производителем вариант с $I < FS < 2.8$ | <b>5,5</b><br>70<br>0,9 | – не рекомендуемые для<br>выбора варианты | _ | – нет вариантов |
|--------------------|-----------------------------------------------------------|-------------------------|-------------------------------------------|---|-----------------|
|--------------------|-----------------------------------------------------------|-------------------------|-------------------------------------------|---|-----------------|



В предлагаемых таблицах выбора, вращающий момент на выходном валу моторредуктора  $T_2$  и коэффициент эксплуатации F.S. рассчитаны для  $n_1$ =1400 об/мин. Если в Вашем мотор-редукторе установлен электродвигатель с другой номинальной частотой вращения, то Вам необходимо связаться с нашей технической службой для более точного расчета параметров Вашего мотор-редуктора.

| Тип                 |                          |                                  |                                  | Пер                              | едаточ                          | ное о                           | гношен                          | ние <i>і</i>             |                         |       |       | Легенда                                                 | Масса, |
|---------------------|--------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|-------------------------|-------|-------|---------------------------------------------------------|--------|
| мотор-<br>редуктора | 44:1                     | 63:1                             | 95:1                             | 126:1                            | 176:1                           | 252:1                           | 309:1                           | 353:1                    | 441:1                   | 504:1 | 630:1 | Леге                                                    | КГ     |
|                     |                          |                                  |                                  |                                  | $P_1=0,09$                      | кВт / 1                         | 400 об/                         | мин                      |                         |       |       |                                                         |        |
| STA<br>63/40        | <b>32,0</b><br>22<br>>3  | <b>22,0</b><br>31<br>2,5         | <b>15,0</b><br>38<br><i>1,9</i>  | <b>11,0</b><br>47<br>1,3         | <b>8,0</b> 56 1,2               | <b>5,5</b><br>70<br><i>0,</i> 9 |                                 |                          | _                       |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 7,4    |
| STA<br>63/50        |                          | _                                |                                  |                                  | _                               |                                 | <b>4,6</b><br>86<br>1,3         | <b>4,0</b><br>90<br>1,1  | <b>3,2</b><br>97<br>1,0 |       |       | $m_2$ $M_2$ F.S.                                        | 8,7    |
|                     |                          |                                  |                                  | I                                | $P_1 = 0.12$                    | кВт / 1                         | 400 об/                         | мин                      |                         |       |       |                                                         |        |
| STA<br>63/40        | <b>32,0</b><br>29<br>2,7 | <b>22,0</b><br>41<br><i>1,</i> 9 | <b>15,0</b><br>51<br><i>1,5</i>  | <b>11,0</b><br>63<br><i>1,0</i>  | <b>8,0</b><br>75<br><i>0,</i> 9 |                                 |                                 |                          |                         |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 8,6    |
| STA<br>63/50        |                          |                                  |                                  |                                  |                                 | <b>5,5</b><br>100<br>1,2        | <b>4,6</b><br>115<br><i>1,0</i> |                          |                         |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 10,0   |
|                     |                          |                                  |                                  | I                                | $P_1 = 0.18$                    | кВт / 1                         | 400 об/                         | мин                      |                         |       |       |                                                         |        |
| STA<br>63/40        | <b>32,0</b><br>44<br>1,8 | <b>22,0</b><br>62<br>1,3         | <b>15,0</b><br>76<br>1,0         |                                  |                                 |                                 |                                 |                          |                         |       |       | $m_2$ $M_2$ F.S.                                        | 9,1    |
| STA<br>63/50        |                          |                                  |                                  | <b>11,0</b><br>98<br>1,2         | <b>8,0</b><br>118<br><i>1,2</i> | _                               |                                 |                          |                         |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 11,0   |
|                     |                          |                                  |                                  | I                                | $P_1 = 0,25$                    | кВт / 1                         | !400 об/                        | мин                      |                         |       |       |                                                         |        |
| STA<br>71/50        | <b>32,0</b><br>62<br>2,3 | <b>22,0</b><br>88<br><i>1,5</i>  | <b>15,0</b><br>107<br><i>1,2</i> |                                  |                                 |                                 |                                 |                          |                         |       |       | $m_2$ $M_2$ F.S.                                        | 12,0   |
| STA<br>71/60        |                          |                                  |                                  | <b>11,0</b><br>137<br><i>1,7</i> | <b>8,0</b><br>170<br><i>1,4</i> |                                 |                                 |                          |                         |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 15,0   |
| STA<br>71/70        |                          | _                                |                                  |                                  |                                 | <b>5,5</b><br>230<br>1,3        | <b>4,6</b><br>265<br>1,0        | <b>4,0</b><br>275<br>0,9 |                         |       |       | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 16,0   |







2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL

| Тип            | Передаточное отношение <i>i</i>  |                                 |                                   |                                    |                                  |                                   |                                  |                                  |                                  |                          |                                  |                                                         | 1            |
|----------------|----------------------------------|---------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|----------------------------------|---------------------------------------------------------|--------------|
| мотор-         |                                  |                                 |                                   |                                    |                                  | ,                                 |                                  |                                  |                                  |                          |                                  | Легенда                                                 | Масса,<br>кг |
| редуктора      | 44:1                             | 58:1                            | 63:1                              | 78:1                               | 95:1                             | 126:1                             | 176:1                            | 252:1                            | 309:1                            | 353:1                    | 441:1                            | Ле                                                      | NI NI        |
|                | 32,0                             |                                 | 22,0                              | 1                                  | P <sub>1</sub> =0,37             | кВт / 1                           | 400 00/<br>                      | мин                              |                                  |                          |                                  |                                                         |              |
| STA<br>71/50   | 92<br>1,6                        |                                 | 131<br>1,0                        |                                    |                                  |                                   | _                                |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 13,0         |
| STA<br>71/60   |                                  |                                 |                                   |                                    | <b>15,0</b><br>165<br><i>1,4</i> | <b>11,0</b><br>215<br><i>1,1</i>  | <b>8,0</b><br>251<br><i>1,0</i>  |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 15,0         |
| STA<br>71/70   |                                  | _                               |                                   |                                    | _                                |                                   |                                  | <b>5,5</b><br>346<br><i>0,</i> 9 |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 17,0         |
|                |                                  | I.                              |                                   | 1                                  | $P_1 = 0.55$                     | кВт / 1                           | 1400 oo                          |                                  | I.                               | I.                       | l.                               |                                                         | ı            |
| STA<br>80/60   | <b>32,0</b><br>138<br><i>1,6</i> |                                 | <b>22,0</b><br>197<br><i>1,2</i>  |                                    | <b>15,0</b><br>245<br><i>1,0</i> |                                   |                                  |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 18,0         |
| STA<br>80/70   | _                                |                                 |                                   |                                    | _                                | <b>11,0</b><br>325<br><i>1,1</i>  | _                                |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 20,0         |
| STA<br>80/85   |                                  |                                 |                                   |                                    |                                  |                                   | <b>8,0</b><br>394<br><i>1,3</i>  | <b>5,5</b><br>525<br>1,0         |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 24,0         |
| STA<br>80/110  | _                                |                                 |                                   |                                    | _                                |                                   |                                  |                                  | <b>4,6</b> 605 1,8               | <b>4,0</b><br>682<br>1,4 | <b>3,2</b><br>787<br>1,2         | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 51,0         |
|                |                                  |                                 | I.                                | 1                                  | $P_1 = 0.75$                     | кВт / 1                           | 400 обл                          | мин                              |                                  |                          | •                                |                                                         |              |
| STA<br>80/60   | <b>32,0</b><br>189<br><i>1,2</i> |                                 | <b>22,0</b><br>268<br><i>0,</i> 9 |                                    | —                                |                                   |                                  |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 20,0         |
| STA<br>80/70   | _                                |                                 |                                   |                                    |                                  | <b>11,0</b><br>349<br><i>0,8</i>  |                                  |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 21,0         |
| STA<br>80/85   | _                                |                                 |                                   |                                    |                                  |                                   | <b>8,0</b><br>537<br><i>0,</i> 9 |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 25,0         |
| STA<br>80/110  | _                                |                                 |                                   | _                                  | _                                |                                   |                                  | <b>5,5</b><br>742<br>1,5         | <b>4,6</b><br>825<br>1,3         | <b>4,0</b><br>931<br>1,1 | <b>3,2</b><br>1075<br><i>0,9</i> | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 53,0         |
|                |                                  | •                               |                                   |                                    | $P_1=1,1$                        | кВт / 1                           | 400 об/.                         | мин                              |                                  |                          | •                                |                                                         |              |
| STA<br>80/70   | <b>32,0</b><br>280<br><i>1,0</i> | _                               |                                   |                                    | l                                |                                   |                                  |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 22,0         |
| STA<br>80/85   |                                  |                                 | <b>22,0</b><br>404<br>1,3         |                                    | <b>15,0</b><br>505<br><i>1,0</i> |                                   | _                                |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 27,0         |
| STA<br>80/110  | _                                | _                               |                                   | _                                  | _                                | <b>11,0</b><br>678<br><i>1,6</i>  | <b>8,0</b><br>827<br>1,4         | <b>5,5</b><br>1088<br><i>1,0</i> | <b>4,6</b><br>1210<br><i>0,9</i> |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 56,0         |
| STA<br>100/70  | <b>32,1</b><br>266<br>1,2        | <b>24</b><br>321<br><i>0</i> ,9 | <b>22,5</b><br>361<br><i>0,9</i>  |                                    | _                                |                                   | _                                |                                  |                                  |                          | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 25,0         |
| STA<br>100/85  | <b>32,1</b> 266 <i>2,1</i>       | <b>4</b><br>322<br>1,6          | <b>22,5</b><br>366<br>1,6         | <b>18,05</b><br>417<br><i>1,18</i> | <b>15</b><br>514<br><i>1,15</i>  | <b>11,1</b><br>745<br><i>0,</i> 8 | _                                |                                  |                                  |                          |                                  | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 28,0         |
| STA<br>100/110 |                                  | _                               | <b>22,5</b> 376 2,89              | <b>18,05</b> 423 2,26              | 15<br>528<br>2,1                 | <b>11,1</b><br>777<br>1,6         | <b>8,03</b><br>829<br><i>1,4</i> | <b>5,62</b> 1071 1,0             | _                                | _                        | _                                | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 58,0         |



CERT DIN EN ISO 9001



2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL

| Тип                                   | -10-010-                          |                                  | <u> </u>                            |                                      |                                  | ное от                            | •                                 |       |       |       |       | ф                                                       | Масса, |
|---------------------------------------|-----------------------------------|----------------------------------|-------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-------|-------|-------|-------|---------------------------------------------------------|--------|
| мотор-<br>редуктора                   | 44:1                              | 58:1                             | 63:1                                | 78:1                                 | 95:1                             | 126:1                             | 176:1                             | 252:1 | 309:1 | 353:1 | 441:1 | Легенда                                                 | кг     |
| родуктора                             |                                   |                                  |                                     | _                                    | $P_1 = 1,5$                      | кВт / 1                           | 400 οδ/.                          | мин   |       |       |       |                                                         |        |
| STA<br>80/85                          | <b>32,0</b><br>382<br>1,3         | _                                | <b>22,0</b> 550 <i>1,0</i>          | _                                    | _                                |                                   | _                                 | _     | _     | _     | _     | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 29,0   |
| STA<br>80/110                         |                                   | _                                |                                     |                                      | <b>15,0</b><br>706<br><i>1,6</i> | <b>11,0</b><br>925<br><i>1,2</i>  | <b>8,0</b><br>1128<br><i>1,0</i>  |       |       |       | l     | <i>n</i> <sub>2</sub> <i>M</i> <sub>2</sub> <i>F.S.</i> | 59,0   |
| STA<br>100/70                         | <b>32,1</b><br>362<br><i>0</i> ,9 |                                  |                                     |                                      |                                  |                                   |                                   |       |       |       |       | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 26,0   |
| STA<br>100/85                         | <b>32,1</b> 367 <i>1,55</i>       | <b>24</b><br>433<br>1,19         | <b>22,5</b><br>512<br><i>1,15</i>   | <b>18,05</b><br>561<br><i>0,8</i>    |                                  |                                   |                                   |       |       |       | —     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 32,0   |
| STA<br>100/110                        | <b>32,1</b> 367 <i>2,6</i>        | <b>24</b><br>444<br>2,25         | <b>22,5</b><br>512<br><i>2,1</i>    | <b>18,05</b> 569 <i>1,68</i>         | <b>15</b><br>720<br>1,55         | <b>11,1</b><br>932<br><i>1,32</i> | <b>8,03</b><br>1128<br><i>1,0</i> |       |       |       | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 62,0   |
|                                       |                                   |                                  |                                     |                                      | $\overline{P_1=2,2}$             | кВт / 1                           | 400 oб/.                          | мин   | •     |       |       | •                                                       |        |
| STA<br>100/85                         | <b>32,1</b> 521 <i>1,0</i> 9      | <b>24</b><br>632<br><i>0,8</i>   | <b>22,5</b><br>717<br><i>0,</i> 8   |                                      |                                  |                                   |                                   |       |       |       | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 36,0   |
| STA<br>100/110                        | <b>32,1</b> 528 <i>1,7</i>        | <b>24</b><br>650<br>1,54         | <b>22,5</b><br>736<br><i>1,48</i>   | <b>18,05</b><br>832,2<br><i>1,15</i> | <b>15</b><br>1035<br><i>1,08</i> | <b>11,1</b><br>1332<br><i>0,9</i> |                                   |       |       |       | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 66,0   |
|                                       |                                   |                                  |                                     |                                      | $P_1 = 3,0$                      | кВт / 1                           | 400 об/.                          | мин   |       |       |       |                                                         |        |
| STA<br>100/85                         | <b>32,1</b><br>708<br><i>0,</i> 8 | _                                |                                     |                                      | _                                |                                   | _                                 |       |       |       | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 38,0   |
| STA<br>100/110                        | <b>32,1</b><br>717<br>1,3         | <b>24</b><br>912<br>1,09         | <b>22,5</b><br>1000<br><i>1,0</i> 9 | <b>18,05</b><br>1168<br><i>0,8</i>   | <b>15</b><br>1406<br><i>0,8</i>  |                                   | _                                 | _     | _     | _     | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 68,0   |
| P <sub>I</sub> =4,0 кВт / 1400 об/мин |                                   |                                  |                                     |                                      |                                  |                                   |                                   |       |       |       |       |                                                         |        |
| STA<br>100/110                        | <b>32,1</b><br>936<br><i>1,0</i>  | <b>24</b><br>1162<br><i>0,85</i> | <b>22,5</b><br>1304<br><i>0,8</i> 3 | _                                    | _                                |                                   | _                                 |       |       | _     | _     | n <sub>2</sub><br>M <sub>2</sub><br>F.S                 | 76,0   |





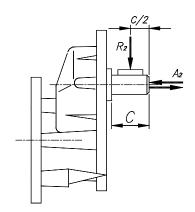
2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL

#### Цилиндро-червячные двухступенчатые редукторы FTA и цилиндрические предступени

#### Принятые в таблицах обозначения

i – передаточное отношение редуктора ( $i=i_1 i_2$ );

 $i_1$  – передаточное отношение цилиндрической предступени ( $i_1$ =3,5; 6,3; 8,0);


 $i_2$  – передаточное отношение червячной ступени ( $i_2$ =7; 10; 15; 20; 28; 40; 49; 56; 70; 80; 100);

КПД редуктора вычисляется аналогично:  $\eta = \eta_1 \cdot \eta_2$ .

При расчетах КПД цилиндрической ступени принимается равным  $\eta_1$ =0,98.

 $n_I$ =**1400** oб/мин — скорость вращения входного вала;

 $n_2 [oб/мин]$  — скорость вращения выходного вала редуктора  $(n_2 = n_1/i)$ .



#### Цилиндрические предступени

| пре<br>Передаточ<br>отношение | _                       | 63                    | 71                    | 80                   | 100                    |
|-------------------------------|-------------------------|-----------------------|-----------------------|----------------------|------------------------|
| <i>i</i> <sub>1</sub> =3,5    | $N_1/M_2$ $R_2$ , $[H]$ | 0,50/12<br><b>390</b> | 1,10/26<br><b>490</b> | 3,1/68<br><b>610</b> | 8,7/235<br><b>1500</b> |
| <i>i</i> <sub>1</sub> =6,3    | $N_1/M_2$ $R_2$ , $ H $ | 0,23/10<br><b>450</b> | 0,52/22<br>560        | 1,5/65<br>700        | 4,0/163<br><b>2500</b> |
| <i>i</i> <sub>1</sub> =8,0    | $N_1/M_2$ $R_2$ , [H]   | 0,18/9<br><b>450</b>  | 0,37/20<br><b>560</b> | 1,1/60<br><b>700</b> | 2,2/136<br><b>2500</b> |

 $R_2$ , [H] –максимально допустимое значение радиальной консольной нагрузки, приложенной к середине выходного вала;  $A_2 = 0, 2 \cdot R_2$ , [H] – максимально допустимое значение осевой нагрузки.

### Цилиндро-червячные двухступенчатые редукторы FTA

| <u>25:1</u> | <u>– Передаточное отношение редуктора <i>i</i> – жирным шрифтом с выделением–</u>  | <u>i</u> |
|-------------|------------------------------------------------------------------------------------|----------|
| 57          | – Скорость выходного вала $n_2$ , $[oб/мин]$ – жирным шрифтом с выделением–        | $n_2$    |
| 0,55        | – Максимальная мощность на входе $N_L \lceil \kappa Bm \rceil$ – обычным шрифтом – | $N_{I}$  |
| 72          | – Максимальный выходной момент $M_1/H_M/$ – жирным шрифтом–                        | $M_2$    |
| 0,78        | – Динамический КПД редуктора $\eta$ – курсивом –                                   | $\eta$   |

| Тип<br>редуктора | $i_2$ $i_1$ , | 7           | 10          | 15          | 20          | 28          | 40    | 49           | 56           | 70           | 80           | 100          | Легенда          |
|------------------|---------------|-------------|-------------|-------------|-------------|-------------|-------|--------------|--------------|--------------|--------------|--------------|------------------|
|                  |               | <u>25:1</u> | <u>35:1</u> | <u>53:1</u> | <u>70:1</u> | <u>98:1</u> | 140:1 | <u>172:1</u> | <u>196:1</u> | <u>245:1</u> | <u>280:1</u> | <u>350:1</u> | <u>i</u>         |
|                  |               | 57          | 40          | 27          | 20          | 14          | 10    | 8            | 7            | 6            | 5            | 4            | $n_2$            |
|                  | 3,5           | 0,55        | 0,40        | 0,28        | 0,20        | 0,19        | 0,13  | 0,11         | 0,10         | 0,06         | 0,05         | 0,03         | $N_1$            |
|                  |               | 72          | 72          | 70          | 60          | 70          | 64    | 58           | 56           | 42           | 35           | 25           | $M_2$            |
|                  |               | 0,78        | 0,75        | 0,70        | 0,63        | 0,56        | 0,50  | 0,46         | 0,44         | 0,41         | 0,40         | 0,35         | $\eta$           |
|                  |               | 44:1        | <u>63:1</u> | <u>95:1</u> | 126:1       | 176:1       | 252:1 | 309:1        | <u>353:1</u> | 441:1        | <u>504:1</u> | <u>630:1</u> | <u>i</u>         |
| FTA              |               | 32          | 22          | 15          | 11          | 8           | 5,5   | 4,6          | 4            | 3,2          | 2,8          | 2,2          | $n_2$            |
|                  | 6,3           | 0,35        | 0,25        | 0,17        | 0,12        | 0,11        | 0,08  | 0,06         | 0,06         | 0,05         | 0,04         | 0,03         | $N_1$            |
| 63/40            |               | <b>7</b> 9  | <b>78</b>   | 74          | 63          | 69          | 63    | 57           | 55           | 53           | <b>5</b> 1   | 46           | $M_2$            |
|                  |               | 0,76        | 0,72        | 0,67        | 0,60        | 0,52        | 0,45  | 0,43         | 0,39         | 0,35         | 0,34         | 0,31         | η                |
|                  |               | 56:1        | 80:1        | 120:1       | 160:1       | 224:1       | 320:1 | 392:1        | 448:1        | 560:1        | 640:1        | 800:1        | <u>i</u>         |
|                  |               | 25          | 18          | 12          | 9           | 6,3         | 4,4   | 3,5          | 3            | 2,5          | 2,2          | 1,75         | $\overline{n_2}$ |
|                  | 8,0           | 0,32        | 0,23        | 0,16        | 0,11        | 0,11        | 0,08  | 0,06         | 0,05         | 0,03         | 0,03         | 0,02         | $N_1$            |
|                  |               | 93          | 89          | 84          | 72          | 85          | 75    | 69           | 59           | 45           | 38           | 27           | $M_2$            |
|                  |               | 0,75        | 0,72        | 0,65        | 0,59        | 0,50        | 0,44  | 0,41         | 0,38         | 0,36         | 0,34         | 0,31         | $\eta^{-}$       |



2. Цилиндро-червячные редукторы и мотор-редукторы
 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL





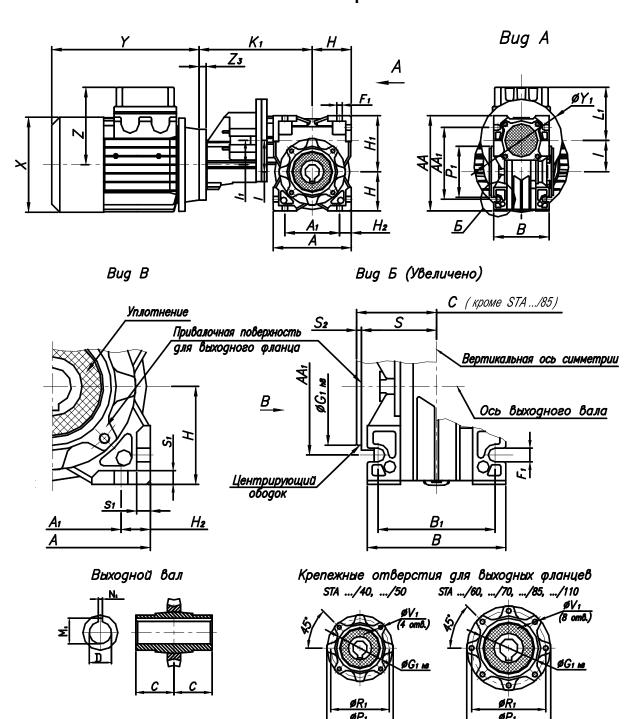
| Тип<br>редуктора      | $i_2$ $i_1$ , | 7                                  | 10                                 | 15                                 | 20                                 | 28                                 | 40                                 | 49                                 | 56                                 | 70                                 | 80                                 | 100                                | <u>і</u><br>Легенда                                         |
|-----------------------|---------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------------------------------|
|                       |               | <u>25:1</u><br>57                  | 35:1<br>40                         | <u>53:1</u><br>27                  | 70:1<br>20                         | 98:1<br>14                         | 140:1<br>10                        | <u>172:1</u><br>8                  | <u>196:1</u><br>7                  | <u>245:1</u><br>6                  | <u>280:1</u><br>5                  | <u>350:1</u><br>4                  | $\frac{i}{n_2}$                                             |
|                       | 3,5           | 1,02<br><b>135</b><br><i>0,7</i> 9 | 0,70<br><b>127</b><br><i>0,76</i>  | 0,50<br><b>125</b><br><i>0,70</i>  | 0,33<br><b>105</b><br><i>0,66</i>  | 0,32<br><b>125</b><br><i>0,5</i> 9 | 0,21<br><b>105</b><br><i>0,52</i>  | 0,20<br><b>115</b><br><i>0,50</i>  | 0,16<br><b>100</b><br><i>0,46</i>  | 0,11<br><b>80</b><br><i>0,42</i>   | 0,09<br><b>70</b><br><i>0,40</i>   | 0,06<br><b>50</b><br><i>0,35</i>   | $egin{array}{c} N_1 \ M_2 \end{array}$                      |
| FTA                   |               | 44:1<br>32                         | 63:1<br>22                         | 95:1<br>15                         | <u>126:1</u><br>11                 | <u>176:1</u><br>8                  | 252:1<br>5,5                       | 309:1<br>4,6                       | 353:1<br>4                         | 441:1<br>3,2                       | 504:1<br>2,8                       | 630:1<br>2,2                       | $\frac{\eta}{\frac{i}{n_2}}$                                |
| 63/50<br>71/50        | 6,3           | 0,62<br><b>145</b><br><i>0,78</i>  | 0,42<br><b>133</b><br><i>0,74</i>  | 0,30<br><b>130</b><br><i>0,67</i>  | 0,20<br><b>113</b><br><i>0,6</i> 3 | 0,20<br><b>138</b><br><i>0,55</i>  | 0,14<br><b>115</b><br><i>0,4</i> 8 | 0,11<br><b>108</b><br><i>0,45</i>  | 0,10<br><b>100</b><br><i>0,42</i>  | 0,09<br><b>92</b><br><i>0,</i> 36  | 0,07<br><b>89</b><br><i>0,</i> 36  | 0,05<br><b>72</b><br><i>0,31</i>   | $egin{array}{c} N_1 \ M_2 \ oldsymbol{\eta} \end{array}$    |
|                       | 0.0           | <u>56:1</u><br>25                  | 80:1<br>18                         | 120:1<br>12                        | <u>160:1</u><br>9                  | 224:1<br>6,3                       | 320:1<br>4,4                       | 392:1<br>3,5                       | <u>448:1</u><br>3                  | 560:1<br>2,5                       | 640:1<br>2,2                       | 800:1<br>1,75                      | $\frac{i}{n_2}$                                             |
|                       | 8,0           | 0,58<br><b>170</b><br><i>0,77</i>  | 0,41<br><b>165</b><br><i>0,7</i> 3 | 0,28<br><b>154</b><br><i>0,67</i>  | 0,20<br><b>130</b><br><i>0,61</i>  | 0,18<br><b>150</b><br><i>0,55</i>  | 0,13<br><b>130</b><br><i>0,47</i>  | 0,10<br><b>120</b><br><i>0,45</i>  | 0,09<br><b>115</b><br><i>0,41</i>  | 0,06<br><b>86</b><br><i>0,</i> 36  | 0,05<br><b>73</b><br><i>0,</i> 37  | 0,03<br><b>53</b><br><i>0,31</i>   | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$               |
|                       |               | <u>25:1</u><br>57                  | 35:1<br>40                         | <u>53:1</u><br>27                  | 70:1<br>20                         | 98:1<br>14                         | 140:1<br>10                        | <u>172:1</u><br>8                  | <u>196:1</u><br>7                  | <u>245:1</u><br>6                  | <u>280:1</u><br>5                  | 350:1<br>4                         | $\frac{i}{n_2}$                                             |
|                       | 3,5           | 1,53<br><b>205</b><br><i>0,80</i>  | 1,18<br><b>217</b><br><i>0,77</i>  | 0,83<br><b>215</b><br><i>0,72</i>  | 0,57<br><b>192</b><br><i>0,70</i>  | 0,53<br><b>217</b><br><i>0,61</i>  | 0,33<br><b>177</b><br><i>0,57</i>  | 0,27<br><b>170</b><br><i>0,54</i>  | 0,23<br><b>152</b><br><i>0,4</i> 9 | 0,19<br><b>145</b><br><i>0,4</i> 5 | 0,15<br><b>110</b><br><i>0,38</i>  | 0,10<br><b>85</b><br><i>0,</i> 36  | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$               |
| FTA<br>63/60          |               | 44:1<br>32                         | 63:1<br>22                         | 95:1<br>15                         | <u>126:1</u><br>11                 | 176:1<br>8                         | <u>252:1</u><br>5,5                | 309:1<br>4,6                       | 353:1<br>4                         | 441:1<br>3,2                       | 504:1<br>2,8                       | 630:1<br>2,2                       | $\frac{i}{n_2}$                                             |
| 71/60<br>80/60        | 6,3           | 0,92<br><b>218</b><br><i>0,7</i> 9 | 0,74<br><b>237</b><br>0,75         | 0,52<br><b>235</b><br><i>0,70</i>  | 0,40<br><b>230</b><br><i>0,67</i>  | 0,35<br><b>238</b><br><i>0,57</i>  | 0,23<br><b>210</b><br><i>0,5</i> 3 | 0,16<br><b>160</b><br><i>0,4</i> 9 | 0,16<br><b>175</b><br><i>0,4</i> 5 | 0,11<br><b>141</b><br><i>0,42</i>  | 0,10<br><b>130</b><br><i>0,37</i>  | 0,08<br><b>122</b><br><i>0,3</i> 5 | $egin{array}{c} N_1 \ M_2 \ oldsymbol{\eta} \end{array}$    |
|                       | 8,0           | <u>56:1</u><br>25                  | 80:1<br>18                         | 120:1<br>12                        | 160:1<br>9                         | 224:1<br>6,3                       | 320:1<br>4,4                       | 392:1<br>3,5                       | 448:1<br>3                         | <u>560:1</u><br>2,5                | 640:1<br>2,2                       | 800:1<br>1,75                      | $\frac{i}{n_2}$                                             |
|                       |               | 0,87<br><b>260</b><br><i>0,78</i>  | 0,68<br><b>280</b><br><i>0,75</i>  | 0,49<br><b>275</b><br><i>0,6</i> 9 | 0,34<br><b>240</b><br><i>0,65</i>  | 0,31<br><b>270</b><br><i>0,57</i>  | 0,21<br><b>235</b><br><i>0,51</i>  | 0,16<br><b>220</b><br><i>0,50</i>  | 0,15<br><b>200</b><br><i>0,4</i> 3 | 0,10<br><b>155</b><br><i>0,41</i>  | 0,08<br><b>125</b><br><i>0,37</i>  | 0,05<br><b>92</b><br><i>0,35</i>   | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$               |
|                       | 3,5           | <u>25:1</u><br>57                  | 35:1<br>40                         | <u>53:1</u><br>27                  | 70:1<br>20                         | 98:1<br>14                         | 140:1<br>10                        | 172:1<br>8                         | <u>196:1</u><br>7                  | <u>245:1</u><br>6                  | 280:1<br>5                         | 350:1<br>4                         | $\frac{i}{n_2}$                                             |
|                       |               | 1,96<br><b>265</b><br><i>0,81</i>  | 1,48<br><b>275</b><br><i>0,78</i>  | 1,08<br><b>285</b><br><i>0,74</i>  | 0,77<br><b>260</b><br><i>0,71</i>  | 0,72<br><b>310</b><br><i>0,64</i>  | 0,50<br><b>270</b><br><i>0,57</i>  | 0,43<br><b>270</b><br><i>0,54</i>  | 0,36<br><b>235</b><br><i>0,4</i> 9 | 0,30<br><b>225</b><br><i>0,45</i>  | 0,26<br><b>200</b><br><i>0,41</i>  | 0,19<br><b>180</b><br><i>0,</i> 39 | $egin{array}{c} N_1 \ M_2 \ \eta \ \hline m{i} \end{array}$ |
| FTA                   | 0.0           | 44:1<br>32                         | 63:1<br>22                         | 95:1<br>15                         | <u>126:1</u><br>11                 | 176:1<br>8                         | 252:1<br>5,5                       | 309:1<br>4,6                       | 353:1<br>4                         | 441:1<br>3,2                       | <u>504:1</u><br>2,8                | 630:1<br>2,2                       | $\frac{i}{n_2}$                                             |
| 71/70<br>80/70        | 6,3           | 1,2<br><b>289</b><br><i>0,80</i>   | 0,95<br><b>310</b><br><i>0,76</i>  | 0,68<br><b>310</b><br><i>0,71</i>  | 0,50<br><b>292</b><br><i>0,68</i>  | 0,44<br><b>320</b><br><i>0,60</i>  | 0,32<br><b>295</b><br><i>0,54</i>  | 0,26<br><b>272</b><br><i>0,50</i>  | 0,23<br><b>254</b><br><i>0,4</i> 6 | 0,18<br><b>221</b><br><i>0,42</i>  | 0,17<br><b>210</b><br><i>0,37</i>  | 0,12<br><b>190</b><br><i>0,3</i> 6 | $egin{array}{c} N_1 \ M_2 \ oldsymbol{\eta} \end{array}$    |
|                       |               | <u>56:1</u><br>25                  | 80:1<br>18                         | 120:1<br>12                        | 160:1<br>9                         | 224:1<br>6,3                       | 320:1<br>4,4                       | 392:1<br>3,5                       | <u>448:1</u><br>3                  | <u>560:1</u><br>2,5                | 640:1<br>2,2                       | 800:1<br>1,75                      | $\frac{\eta}{\frac{i}{n_2}}$                                |
|                       | 8,0           | 1,26<br><b>380</b><br><i>0,7</i> 9 | 0,88<br><b>365</b><br><i>0,76</i>  | 0,63<br><b>360</b><br><i>0,70</i>  | 0,44<br><b>325</b><br><i>0,67</i>  | 0,48<br><b>440</b><br><i>0,60</i>  | 0,28<br><b>320</b><br><i>0,5</i> 3 | 0,24<br><b>320</b><br><i>0,50</i>  | 0,20<br><b>275</b><br><i>0,45</i>  | 0,16<br><b>245</b><br><i>0,41</i>  | 0,12<br><b>200</b><br><i>0,</i> 38 | 0,05<br><b>145</b><br><i>0,</i> 35 | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$               |
|                       | 0.5           | <u>25:1</u><br>57                  | 35:1<br>40                         | <u>53:1</u><br>27                  | 70:1<br>20                         | 98:1<br>14                         | 140:1<br>10                        | 172:1<br>8                         | <u>196:1</u><br>7                  | <u>245:1</u><br>6                  | 280:1<br>5                         | 350:1<br>4                         | $\frac{i}{n_2}$                                             |
|                       | 3,5           | 3,14<br><b>430</b><br><i>0,82</i>  | 2,39<br><b>450</b><br><i>0,7</i> 9 | 1,77<br><b>475</b><br><i>0,7</i> 5 | 1,37<br><b>470</b><br><i>0,72</i>  | 1,11<br><b>475</b><br><i>0,64</i>  | 0,80<br><b>445</b><br><i>0,5</i> 8 | 0,65<br><b>420</b><br><i>0,55</i>  | 0,58<br><b>410</b><br><i>0,5</i> 3 | 0,49<br><b>390</b><br><i>0,48</i>  | 0,40<br><b>340</b><br><i>0,44</i>  | 0,26<br><b>250</b><br><i>0,40</i>  | $egin{array}{c} N_1 \ M_2 \ oldsymbol{\eta} \end{array}$    |
| FTA<br>71/85<br>80/85 |               | 44:1<br>32                         | 63:1<br>22                         | 95:1<br>15                         | <u>126:1</u><br>11                 | <u>176:1</u><br>8                  | 252:1<br>5,5                       | 309:1<br>4,6                       | 353:1<br>4                         | 441:1<br>3,2                       | 504:1<br>2,8                       | 630:1<br>2,2                       | $\frac{\eta}{\frac{i}{n_2}}$                                |
|                       | 6,3           | 2,0<br><b>490</b><br><i>0,80</i>   | 1,6<br><b>526</b><br><i>0,77</i>   | 1,1<br><b>516</b><br><i>0,72</i>   | 0,84<br><b>495</b><br><i>0,6</i> 9 | 0,69<br><b>501</b><br><i>0,60</i>  | 0,53<br><b>500</b><br><i>0,55</i>  | 0,43<br><b>466</b><br><i>0,51</i>  | 0,37<br><b>449</b><br><i>0,50</i>  | 0,28<br><b>391</b><br><i>0,46</i>  | 0,26<br><b>380</b><br><i>0,42</i>  | 0,22<br><b>345</b><br><i>0</i> ,36 | $egin{array}{c} N_1 \ M_2 \end{array}$                      |
|                       | 0.0           | <u>56:1</u><br>25                  | 80:1<br>18                         | <u>120:1</u><br>12                 | <u>160:1</u><br>9                  | 224:1<br>6,3                       | 320:1<br>4,4                       | 392:1<br>3,5                       | <u>448:1</u><br>3                  | <u>560:1</u><br>2,5                | 640:1<br>2,2                       | 800:1<br>1,75                      | $\frac{\eta}{\frac{i}{n_2}}$                                |
|                       | 8,0           | 1,76<br><b>530</b><br><i>0,7</i> 9 | 1,42<br><b>595</b><br><i>0,77</i>  | 1,07<br><b>620</b><br><i>0,71</i>  | 0,85<br><b>620</b><br><i>0,67</i>  | 0,65<br><b>600</b><br><i>0,60</i>  | 0,48<br><b>560</b><br><i>0,54</i>  | 0,40<br><b>550</b><br>0,52         | 0,33<br><b>510</b><br><i>0,50</i>  | 0,26<br><b>450</b><br><i>0,45</i>  | 0,20<br><b>360</b><br><i>0,41</i>  | 0,13<br><b>260</b><br><i>0,37</i>  | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$               |







2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL


| Тип<br>редуктора  | $i_2$ $i_b$ | 7                                  | 10                                 | 15                                  | 20                                 | 28                                 | 40                                 | 49                                 | 56                                | 70                                | 80                                | 100                                | Легенда                                                  |
|-------------------|-------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|----------------------------------------------------------|
|                   | 3,5         | <u>25:1</u><br>57                  | 35:1<br>40                         | <u>53:1</u><br>27                   | 70:1<br>20                         | 98:1<br>14                         | <u>140:1</u><br>10                 | <u>172:1</u><br>8                  | <u>196:1</u><br>7                 | <u>245:1</u><br>6                 | <u>280:1</u><br>5                 | 350:1<br>4                         | $\frac{i}{n_2}$                                          |
|                   |             | 6,02<br><b>835</b><br><i>0,83</i>  | 4,63<br><b>895</b><br><i>0,81</i>  | 3,58<br><b>950</b><br><i>0,74</i>   | 2,61<br><b>910</b><br><i>0,7</i> 3 | 2,18<br><b>960</b><br><i>0,66</i>  | 1,60<br><b>950</b><br><i>0,62</i>  | 1,27<br><b>850</b><br><i>0,57</i>  | 1,12<br><b>820</b><br><i>0,55</i> | 0,86<br><b>750</b><br><i>0,52</i> | 0,86<br><b>740</b><br><i>0,45</i> | 0,54<br><b>540</b><br><i>0,42</i>  | $egin{array}{c} N_1 \ M_2 \ oldsymbol{\eta} \end{array}$ |
| FTA               | 6,3         | <u>44:1</u><br>32                  | 63:1<br>22                         | 95:1<br>15                          | <u>126:1</u><br>11                 | <u>176:1</u><br>8                  | <u>252:1</u><br>5,5                | 309:1<br>4,6                       | 353:1<br>4                        | 441:1<br>3,2                      | 504:1<br>2,8                      | 630:1<br>2,2                       | $\frac{i}{n_2}$                                          |
| 80/110<br>100/110 |             | 4,3<br><b>1030</b><br><i>0,81</i>  | 3,2<br><b>1100</b><br><i>0,7</i> 9 | 2,4<br><b>1150</b><br><i>0,74</i>   | 1,8<br><b>1100</b><br><i>0,71</i>  | 1,6<br><b>1170</b><br><i>0,6</i> 3 | 1,1<br><b>1110</b><br><i>0,57</i>  | 1,0<br><b>1100</b><br><i>0,5</i> 3 | 0,80<br><b>995</b><br><i>0,52</i> | 0,66<br><b>950</b><br><i>0,48</i> | 0,51<br><b>780</b><br><i>0,45</i> | 0,32<br><b>550</b><br><i>0</i> ,39 | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$            |
|                   | 8,0         | <u>56:1</u><br>25                  | 80:1<br>18                         | <u>120:1</u><br>12                  | <u>160:1</u><br>9                  | <u>224:1</u><br>6,3                | 320:1<br>4,4                       | 392:1<br>3,5                       | <u>448:1</u><br>3                 | <u>560:1</u><br>2,5               | <u>640:1</u><br>2,2               | 800:1<br>1,75                      | $\frac{i}{n_2}$                                          |
|                   |             | 3,42<br><b>1045</b><br><i>0,80</i> | 2,75<br><b>1170</b><br><i>0,78</i> | 1,97<br><b>1180</b><br><i>0,7</i> 3 | 1,52<br><b>1160</b><br><i>0,70</i> | 1,29<br><b>1200</b><br><i>0,61</i> | 0,97<br><b>1180</b><br><i>0,56</i> | 0,73<br><b>1020</b><br><i>0,52</i> | 0,64<br><b>980</b><br><i>0,50</i> | 0,52<br><b>920</b><br><i>0,46</i> | 0,43<br><b>850</b><br><i>0,45</i> | 0,27<br><b>550</b><br><i>0,38</i>  | $egin{array}{c} N_1 \ M_2 \ \eta \end{array}$            |







## 2.2.4. Размеры





Обратите внимание: у STA .../85 размер С меньше суммы размеров S+S<sub>2</sub>.





2. Цилиндро-червячные редукторы и мотор-редукторы 2.2 Цилиндро-червячные двухступенчатые мотор-редукторы VARVEL

#### Таблица размеров двухступенчатых мотор-редукторов STA .../...

| Типоразмер         |                       | STA<br>63/40 | STA<br>63/50 | STA<br>63/60 | STA<br>71/50 | STA<br>71/60 | STA<br>71/70 | STA<br>71/85 |
|--------------------|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Размеры            |                       |              |              |              |              |              |              |              |
| Α                  |                       | 100<br>70    | 120          | 144          | 120          | 144          | 172          | 206          |
|                    | <b>A</b> <sub>1</sub> |              | 80           | 100          | 80           | 100          | 120          | 140          |
|                    | AA                    | 121,5        | 144          | 174          | 144          | 174          | 205          | 238          |
|                    | AA <sub>1</sub>       | 91,5         | 104          | 130          | 104          | 130          | 153          | 172          |
|                    | В                     | 71           | 85           | 100          | 85           | 100          | 112          | 130          |
|                    | Н                     | 50           | 60           | 72           | 60           | 72           | 86           | 103          |
|                    | H <sub>1</sub>        | 71,5         | 84           | 102          | 84           | 102          | 119          | 135          |
|                    | K <sub>1</sub>        | 153,5        | 171          | 177          | 173-178      | 183-188      | 209-214      | 224-229      |
|                    | ı                     | 40           | 50           | 60           | 50           | 60           | 70           | 85           |
|                    | I <sub>1</sub>        | 32           | 32           | 32           | 40           | 40           | 40           | 40           |
|                    | P <sub>1</sub>        | 86           | 100          | 110          | 100          | 110          | 130          | 160          |
|                    | S                     | 38,5         | 46,5         | 57           | 46,5         | 57           | 57           | 67*          |
|                    | S <sub>2</sub>        | 2,5          | 3            | 3            | 3            | 3            | 3            | 3*           |
|                    | $\emptyset Y_1$       | 105          | 105          | 105          | 120          | 120          | 120          | 120          |
|                    | $Z_3$                 | 13           | 13           | 13           | 13-18,5      | 13-18,5      | 13-18,5      | 13-18,5      |
|                    | B <sub>1</sub>        | 60           | 70           | 85           | 70           | 85           | 90           | 100          |
| 1                  | F <sub>1</sub>        | 7            | 9            | 9            | 9            | 9            | 11           | 13           |
| Лапы               | S <sub>1</sub>        | 7            | 8            | 10           | 8            | 10           | 11           | 14           |
|                    | H <sub>2</sub>        | 15           | 20           | 22           | 20           | 22           | 26           | 33           |
|                    | Т                     | 26           | 30           | 36           | 30           | 36           | 40           | 45           |
| гал                | С                     | 41           | 49           | 60           | 49           | 60           | 60           | 61*          |
| OŇ E               | ØD <sub>H7</sub> **   | 19           | 24           | 25           | 24           | 25           | 28           | 32           |
| Выходной вал       | ØD <sub>H7</sub> **   | 18           | 25           |              | 25           |              | 30           | 35           |
| Въ                 | $M_1$                 | 21,8         | 27,3         | 28,3         | 27,3         | 28,3         | 31,3         | 35,3         |
|                    | N <sub>1</sub>        | 6            | 8            | 8            | 8            | 8            | 8            | 10           |
|                    | ØR₁                   | 75           | 85           | 95           | 85           | 95           | 115          | 130          |
| НОЙ<br>ВЦ          | ωV.                   | M6x8         | M8x10        | M8x16        | M8x10        | M8x16        | M8x16        | M10x18       |
| Выходной<br>фланец | $\emptyset V_1$       | (4 отв.)     | (4 отв.)     | (8 отв.)     | (4 отв.)     | (8 отв.)     | (8 отв.)     | (8 отв.)     |
| Вы<br>ф            | Ø <b>G</b> 1 H8       | 60           | 70           | 80           | 70           | 80           | 95           | 110          |
|                    | ØP₁                   | 86           | 100          | 110          | 100          | 110          | 130          | 160          |

<sup>\* –</sup> Обратите внимание: у STA .../85 размер С меньше суммы размеров S+S₂.

\*\* - поставляется по спецзаказу



**ВНИМАНИЕ:** Габаритные размеры **X**, **Y**, **Z** (стр. 179) могут отличаться в зависимости от типа применяемого электродвигателя и его аксессуаров (принудительное охлаждение, встроенный тормоз, и т.д.)



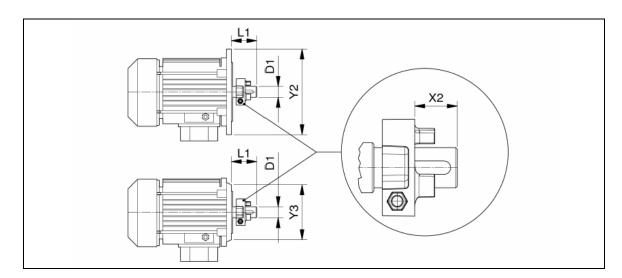




Таблица размеров двухступенчатых мотор-редукторов STA .../...

| Типоразмер          |                          | STA<br>80/60 | STA<br>80/70 | STA<br>80/85 | STA<br>80/110 | STA<br>100/70 | STA<br>100/85 | STA<br>100/110 |
|---------------------|--------------------------|--------------|--------------|--------------|---------------|---------------|---------------|----------------|
| Размеры<br><b>л</b> |                          | 144          |              |              |               |               |               |                |
| A                   |                          | 100          | 172          | 206          | 253           | 172           | 206           | 253            |
|                     | A <sub>1</sub>           |              | 120          | 140          | 170           | 120           | 140           | 170            |
|                     | AA                       |              | 205          | 238          | 295           | 205           | 238           | 295            |
|                     | AA <sub>1</sub>          |              | 153          | 172          | 210           | 153           | 172           | 210            |
|                     | В                        | 100          | 112          | 130          | 144           | 112           | 130           | 144            |
|                     | Н                        | 72           | 86           | 103          | 127,5         | 86            | 103           | 127,5          |
|                     | H <sub>1</sub>           | 102          | 119          | 135          | 167,5         | 119           | 135           | 167,5          |
|                     | K <sub>1</sub>           | 207          | 232,5        | 250,5        | 264,5         | 381           | 417           | 457,5          |
|                     | ı                        | 60           | 70           | 85           | 110           | 70            | 85            | 110            |
|                     | I <sub>1</sub>           | 50           | 50           | 50           | 50            | 63            | 63            | 63             |
|                     | P <sub>1</sub>           | 110          | 130          | 160          | 200           | 130           | 160           | 200            |
|                     | S                        | 57           | 57           | 67*          | 74            | 57            | 67*           | 74             |
|                     | S <sub>2</sub>           | 3            | 3            | 3*           | 3,5           | 3             | 3*            | 3,5            |
|                     | $\emptyset Y_1$          | 140          | 140          | 140          | 140           | 140           | 140           | 140            |
|                     | $Z_3$                    | 14-15        | 14-15        | 14-15        | 14-15         | 14-15         | 14-15         | 14-15          |
|                     | B <sub>1</sub>           | 85           | 90           | 100          | 115           | 90            | 100           | 115            |
| 1                   | F <sub>1</sub>           | 0            | 11           | 13           | 15            | 11            | 13            | 15             |
| Лапы                | S <sub>1</sub>           | 10           | 11           | 14           | 13            | 11            | 14            | 13             |
|                     | H <sub>2</sub>           | 22           | 26           | 33           | 42,5          | 26            | 33            | 42,5           |
|                     | Т                        | 36           | 40           | 45           | 50            | 40            | 45            | 50             |
| ал                  | С                        | 60           | 60           | 61*          | 77,5          | 60            | 61*           | 77,5           |
| ОЙВ                 | Ø <b>D</b> <sub>H7</sub> | 25           | 28           | 32           | 42            | 28            | 32            | 42             |
| Выходной вал        | ØD <sub>H7</sub> **      |              | 30           | 35           |               | 30            | 35            |                |
| Въ                  | $M_1$                    | 28,3         | 31,3         | 35,3         | 45,3          | 31,3          | 35,3          | 45,3           |
|                     | N <sub>1</sub>           | 8            | 8            | 10           | 12            | 8             | 10            | 12             |
|                     | ØR₁                      | 95           | 115          | 130          | 165           | 115           | 130           | 165            |
| НŎЙ                 | ω.                       | M8x6         |              | M10x18       | M10x21        | M8x16         | M10x18        | M10x21         |
| Выходной<br>фланец  | $\emptyset V_1$          | (8 отв.)     | (8 отв.)     | (8 отв.)     | (8 отв.)      | (8 отв.)      | (8 отв.)      | (8 отв.)       |
| Вы<br>ф             | Ø <b>G</b> 1 H8          | 80           | 95           | 110          | 130           | 95            | 110           | 130            |
|                     | ØP₁                      | 110          | 130          | 160          | 200           | 130           | 160           | 200            |

<sup>\* –</sup> Обратите внимание: у STA .../85 размер С меньше суммы размеров S+S<sub>2</sub>. \*\* - поставляется по спецзаказу




ВНИМАНИЕ: Габаритные размеры Х, Y, Z (стр. 178) могут отличаться в зависимости от типа применяемого электродвигателя и его аксессуаров (принудительное охлаждение, встроенный тормоз, и т.д.)





## Установка муфты на валу электродвигателя



| i       | -TA100 - | – IEC B5 | 5   | FTA100<br>G6 |
|---------|----------|----------|-----|--------------|
| IEC     | D1       | L1       | Y2  | X2           |
| 80      | 19       | 40       | 120 | 12           |
| 90      | 24       | 50       | 140 | 22           |
| 100/120 | 28       | 60       | 160 | 30.5         |

| F       | TA100 - | - IEC B1 | 4   | FTA100<br>G6 |
|---------|---------|----------|-----|--------------|
| IEC     | D1      | L1       | Y2  | X2           |
| 80      | 19      | 40       | 120 | 12           |
| 90      | 24      | 50       | 140 | 19           |
| 100/120 | 28      | 60       | 160 | 32           |

